An Introduction to the Volume Conjecture and Its Generalizations
نویسنده
چکیده
In this paper we give an introduction to the volume conjecture and its generalizations. Especially we discuss relations of the asymptotic behaviors of the colored Jones polynomials of a knot with different parameters to representations of the fundamental group of the knot complement at the special linear group over complex numbers by taking the figure-eight knot and torus knots as examples. After V. Jones’ discovery of his celebrated polynomial invariant V (K; t) in 1985 [22], Quantum Topology has been attracting many researchers; not only mathematicians but physicists. The Jones polynomial was generalized to two kinds of two-variable polynomials, the HOMFLYpt polynomial [10, 52] and the Kauffman polynomial [27] (see also [21, 3] for another one-variable specialization). It turned out that these polynomial invariants are related to quantum groups introduced by V. Drinfel′d and M. Jimbo (see for example [26, 55]) and their representations. For example the Jones polynomial comes from the quantum group Uq(sl2(C)) and its two-dimensional representation. We can also define the quantum invariant associated with a quantum group and its representation. If we replace the quantum parameter q of a quantum invariant (t in V (K; t)) with e we obtain a formal power series in the formal parameter h. Fixing a degree d of the parameter h, all the degree d coefficients of quantum invariants share a finiteness property. By using this property, one can define a notion of finite type invariant [2, 1]. (See [57] for V. Vassiliev’s original idea.) Via the Kontsevich integral [35] (see also [36]) we can recover a quantum invariant from the corresponding ‘classical’ data. (Note that a quantum group is a deformation of a ‘classical’ Lie algebra.) So for example one only needs to know the Lie algebra sl2(C) (easy!) and its fundamental two-dimensional representation (very easy!) to define the Jones polynomial, provided that one knows the Kontsevich integral (unfortunately, this is very difficult). In the end of the 20th century, M. Khovanov introduced yet another insight to Quantum Topology. He categorified the Jones polynomial and defined a homology for a knot such that its graded Euler characteristic coincides with the Jones polynomial [29]. See [30] for a generalization to the HOMFLYpt polynomial. Now we are in the 21st century. In 2001, J. Murakami and the author proposed the Volume Conjecture [48] to relate a series of quantum invariants, the N -colored Jones polynomials of a knot, to the volume of the knot complement, generalizing R. Kashaev’s conjecture [24]. The aim of this article is to introduce the conjecture and some of its generalizations, emphasizing a relation of the asymptotic behavior of the series of the colored Jones Date: February 4, 2008. 2000 Mathematics Subject Classification. Primary 57M27, Secondary 57M25 57M50 58J28.
منابع مشابه
Frankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملWiener Way to Dimensionality
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
متن کامل$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کامل